Friday, June 20, 2008

Sally Ride: Setting the Stage for Women in Space

S84-37256: Sally RideAstronaut Sally K. Ride. Credit: NASA
>View Photo Gallery
>NASA 50th Anniversary Moment Podcast
Last week, space shuttle Discovery touched down after a historic mission to the International Space Station, a flight that not only launched the largest laboratory to date, but also the 50th female U.S. astronaut. Just eight weeks prior, astronaut Peggy Whitson returned to Earth after a six-month stay in orbit as the first female space station commander. Women have established their place in space, but it was the flight of Sally Ride 25 years ago that paved the road to the stars.

Ride was a mission specialist on STS-7, launched June 18, 1983. The mission deployed two communications satellites and collected research on a number of scientific experiments.

“The fact that I was going to be the first American woman to go into space carried huge expectations along with it,” said Ride. “And that was made pretty clear the day that I was told I was selected as a crew. I was taken up to Chris Kraft’s office. He wanted to have a chat with me and make sure I knew what I was getting into before I made sure I went on the crew. I was so dazzled to be on the crew and go into space I remembered very little of what he said.”

S83-29016: STS-7 crewThese five astronauts represent the space shuttle's first five-member crew, STS-7. Astronaut Robert L. Crippen (center, first row) is crew commander. Other crew members are astronauts Frederick H. Hauck, right, pilot; and Sally K. Ride, John M. Fabian and Norman E. Thagard, mission specialists. Credit: NASA
Ride joined NASA as part of the 1978 astronaut class, the first class to include women. Ride and five other women were selected out of 8,000 applicants, 1,500 of which were female. Twenty-nine men also were selected. The class became known as the “Thirty-Five New Guys” and reported to the Johnson Space Center the next summer to begin training. Ride would train for five years before she and three of her classmates were assigned to STS-7.

“On launch day, there was so much excitement and so much happening around us in crew quarters, even on the way to the launch pad, going up the launch pad,” Ride said. “I didn’t really think about it that much at the time… but I came to appreciate what an honor it was to be selected to be the first woman to get a chance to go into space.”

Following that historic flight, Ride flew on another shuttle mission, STS-41G in 1984. She was assigned to a third mission, but transitioned to a role on the Challenger accident investigation panel in January 1986. Once the investigation was completed, she served as a special assistant to the NASA administrator.

Since then, Ride has returned to academia and her passion for inspiring young people. She has authored numerous books and founded Sally Ride Science, a company dedicated to supporting students and their interest in math and science.

NASA Awards Contract for Constellation Spacesuit for the Moon



Configuration One

The Constellation Program mission requires two spacesuit system configurations to meet the requirements of Orion missions to the space station and to the moon. Configuration One will support dynamic events such as launch and landing operations; contingency intravehicular activity (IVA) during critical mission events; off-nominal events such as loss of pressurization of the Orion crew compartment; and microgravity EVAs for contingency operations. Image Credit: NASA.

NASA has awarded a contract to Oceaneering International Inc. of Houston, for the design, development and production of a new spacesuit system. The spacesuit will protect astronauts during Constellation Program voyages to the International Space Station and, by 2020, the surface of the moon.

The subcontractors to Oceaneering are Air-Lock Inc. of Milford, Conn., David Clark Co. of Worcester, Mass., Cimarron Software Services Inc. of Houston, Harris Corporation of Palm Bay, Fla., Honeywell International Inc. of Glendale, Ariz., Paragon Space Development Corp. of Tucson, Ariz., and United Space Alliance of Houston.

"The award of the spacesuit contract completes the spaceflight hardware requirements for the Constellation Program's first human flight in 2015," said Jeff Hanley, Constellation program manager at NASA's Johnson Space Center in Houston. Contracts for the Orion crew capsule and the Ares I rocket were awarded during the past two years.

The cost-plus-award-fee spacesuit contract includes a basic performance period from June 2008 to September 2014 that has a value of $183.8 million. During the performance period, Oceaneering and its subcontractors will conduct design, development, test, and evaluation work culminating in the manufacture, assembly, and first flight of the suit components needed for astronauts aboard the Orion crew exploration vehicle. The basic contract also includes initial work on the suit design needed for the lunar surface.

"I am excited about the new partnership between NASA and Oceaneering," said Glenn Lutz, project manager for the spacesuit system at Johnson. "Now it is time for our spacesuit team to begin the journey together that ultimately will put new sets of boot prints on the moon."

Configuration Two

Configuration Two will build upon Configuration One and will support lunar surface operations. While preparing to walk on the moon, the astronauts will construct Configuration Two by replacing elements of Configuration One with elements specialized for surface operations. Image Credit: NASA.

Suits and support systems will be needed for as many as four astronauts on moon voyages and as many as six space station travelers. For short trips to the moon, the suit design will support a week's worth of moon walks. The system also must be designed to support a significant number of moon walks during potential six-month lunar outpost expeditions. In addition, the spacesuit and support systems will provide contingency spacewalk capability and protection against the launch and landing environment, such as spacecraft cabin leaks.

Two contract options may be awarded in the future as part of this contract. Option 1 covers completion of design, development, test and evaluation for the moon surface suit components. Option 1 would begin in October 2010 and run through September 2018, under a cost-plus-award fee structure with a total value of $302.1 million.

Option 2 provides for the Orion suit production, processing and sustaining engineering under a cost-plus-award fee or a firm-fixed-price, indefinite-delivery, indefinite-quantity contract structure with a maximum value of $260 million depending on hardware requirements. Option 2 would begin at the end of the basic performance period in October 2014, and would continue through September 2018.

For The Love of Hubble

The Hubble Space Telescope, the most productive scientific instrument of all time, is slated for its fifth and final repair mission later this year. The space shuttle astronauts will launch from Kennedy Space Center in Florida, match orbits with the telescope, capture it, service it, upgrade it, and replace its broken parts—on the spot.

Roughly the size of a Greyhound bus, Hubble was launched aboard the space shuttle Discovery in 1990 and already has outlived its 15-year life expectancy. Students in high school today have never known a time without Hubble as their conduit to the cosmos. This new servicing mission will extend Hubble’s life several more years. It also will replace burned-out circuit boards to the Advanced Camera for Surveys. That’s the instrument responsible for Hubble’s most memorable images since it was installed in 2002.

Servicing Hubble is a task that requires exquisite dexterity. I recently had the opportunity to visit NASA’s Goddard Space Flight Center in Maryland. There, I donned puffy, pressurized astronaut gloves, wielded a space-age portable screwdriver, stuck my head in a space helmet, and attempted to extract a faulty circuit board in a mock-up of the Advanced Camera for Surveys, which was embedded within a full-scale model of the Hubble telescope. This was a darn-near impossible feat. And I wasn’t weightless. I was not wearing the full-body spacesuit. Nor were Earth and space drifting by.

We normally think of astronauts as brave and noble. But, in this case, having the “right stuff” includes being a hardware surgeon extraordinaire.

Perhaps you didn’t know, but Hubble is not alone up there. About two dozen space telescopes of assorted sizes and shapes orbit the Earth and the Sun. Each of them provides a clear view of the cosmos that is unobstructed, unblemished, and undiminished by Earth’s turbulent and murky atmosphere. But most of these telescopes were launched with no means of servicing them. Parts wear out. Gyroscopes fail. Batteries die. These hardware realities limit a telescope’s life expectancy to anywhere from three to seven years.

These telescopes all advance science, but most perform their duties without the public’s awareness or adulation. They are designed to detect bands of light invisible to the human eye, some of which never penetrate Earth’s atmosphere. Entire classes of objects and phenomena in the cosmos reveal themselves only through one or more of these invisible cosmic windows. Black holes, for example, were discovered by their X-ray calling card—radiation that was generated by the surrounding, swirling gas just before it descended into the abyss. Telescopes also have captured microwave radiation—the primary physical evidence for the Big Bang.

Hubble, on the other hand, is the first and only space telescope to observe the universe using primarily visible light. Its stunningly crisp, colorful, and detailed images of the cosmos make Hubble a kind of supreme version of human eyes in space. Yet Hubble’s appeal to us comes from much more than parades of pretty portraits. Hubble came of age in the 1990s, during an exponential growth of access to the Internet. That’s when its digital images were first cast into the public domain. As we all know, anything that’s fun, free, and forwardable spreads rapidly online. Hubble images, one more splendorous than the next, became screen savers and desktop “wallpaper” for computers owned by people who never before would have had the occasion to celebrate, however quietly, our place in the universe.

Indeed, Hubble brought the universe into our backyards. Or, rather, it expanded our backyards to enclose the universe itself. It did that with images so intellectually, visually, and even spiritually fulfilling that most don’t even need captions. No matter what Hubble reveals—planets, dense star fields, colorful interstellar nebulae, deadly black holes, graceful colliding galaxies, the large-scale structure of the universe—each image establishes your own private vista on the cosmos.

Hubble’s scientific legacy is unimpeachable. More research papers have been published using its data than have ever been published for any other scientific instrument in any discipline. Among Hubble’s highlights is settling the decades-old debate about the age of the universe. Previously, the data were so bad that astrophysicists could not agree. Some thought 10 billion years. Others, 20 billion. Yes, it was embarrassing. But Hubble enabled us to measure accurately how the brightness varies in a particular type of star that resides in a distant cluster of galaxies. That information, when plugged into a simple formula, tells us their distance from Earth. And because the entire universe is expanding at a known rate, we can then turn back the clock to determine how long ago everything was in the same place. The answer? The universe was born 14 billion years ago.

Another result, long suspected to be true but confirmed by Hubble, was the discovery that every large galaxy, such as our own Milky Way, has a supermassive black hole in its center that dines on stars, gas clouds, and other unsuspecting matter that wanders too close. The centers of galaxies are so densely packed with stars that Earth-based telescopes see only a mottled cloud of light—the merged image of hundreds or thousands of stars. From space, Hubble’s sharp imagery allows us to see each star individually and to track its motion around the galactic center. Behold, these stars move much, much faster than they have any right to. A small, unseen yet powerful source of gravity must be tugging on them. Crank the equations, and we are forced to conclude that a black hole lurks in their midst.

In 2004, a year after the Columbia tragedy, NASA announced that Hubble would not receive its last servicing mission. Curiously, the loudest voices of dissent were not from the scientists but from the general public. Akin to a modern version of a torch-wielding mob, angry editorials, snippy letters to the editor, and no end of radio and television talk shows all urged NASA to restore the funding and keep Hubble alive. Congress ultimately listened and reversed the decision. Democracy had a shining moment: Hubble would indeed be serviced, one last time.

For the first time in the history of civilization, the public took ownership of a scientific instrument—they took ownership of the Hubble Space Telescope.

Of course, nothing lasts forever—except, perhaps, the universe itself. So Hubble eventually will die. But in the meantime, NASA is building the James Webb Space Telescope, specially designed to see deeper into the universe than Hubble ever could. When launched early next decade, it will allow us to plumb the depths of gas clouds in our own Milky Way galaxy in search of stellar nurseries, as well as probe the earliest epochs of the universe in search of the formation of galaxies themselves.

Meanwhile, NASA plans to retire the aging space shuttle by 2010. This step will enable its aerospace engineers, assembly lines, and funding streams to focus on a new suite of launch vehicles that will do what the shuttles are not designed to do—return us to the Moon and take us on to Mars and beyond.

The march of discovery continues, driven by our timeless and collective urge to explore.

What We’ve Learned From Hubble
The Hubble has yielded an unprecedented scientific legacy. Among its top achievements:
* It allowed us to accurately measure the age of the universe.
* It confirmed that every large galaxy has at its center a massive black hole.
* It was key to the discovery of the role of “dark energy” in the expanding universe.

Where to Find Hubble Images:
The scientists who work at Hubble’s base-camp, the Space Telescope Science Institute in Baltimore, Maryland, are deeply aware of Hubble’s inspirational power. They identify the best of all images, and sometimes create images that they know in advance will have strong appeal. Visit the Hubble Heritage Project.